skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Birnbach, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Computer-aided data acquisition, analysis, and interpretation are rapidly gaining traction in numerous facets of research. One of the subsets of this field, image processing, is most often implemented for post-processing material microstructural characterization data to understand better and predict materials’ features, properties, and behaviors at multiple scales. However, to tackle the ambiguity of multi-component materials analysis, spectral data can be used in combination with image processing. The current study introduces a novel Python-based image and data processing method for in-depth analysis of energy dispersive spectroscopy (EDS) elemental maps to analyze multi-component agglomerate size distribution, the average area of each component, and their overlap. The framework developed in this study is applied to examine the interaction of Cerium Oxide (CeO x ) and Palladium (Pd) particles in the membrane electrode assembly (MEA) of an Anion-Exchange Membrane Fuel Cell (AEMFC) and to investigate if this approach can be correlated to cell performance. The study also performs a sensitivity analysis of several parameters and their effect on the computed results. The developed framework is a promising method for semi-automatic data processing and can be further advanced towards a fully automatic analysis of similar data types in the field of clean energy materials and broader. 
    more » « less